Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Nucleic Acids Res ; 50(D1): D898-D911, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718728

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.


Assuntos
Bases de Dados Factuais , Vetores de Doenças/classificação , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/transmissão , Biologia Computacional/métodos , Mineração de Dados/métodos , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Humanos , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Virulência , Fluxo de Trabalho
2.
Nucleic Acids Res ; 50(D1): D837-D847, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788826

RESUMO

Since 2005, the Pathogen-Host Interactions Database (PHI-base) has manually curated experimentally verified pathogenicity, virulence and effector genes from fungal, bacterial and protist pathogens, which infect animal, plant, fish, insect and/or fungal hosts. PHI-base (www.phi-base.org) is devoted to the identification and presentation of phenotype information on pathogenicity and effector genes and their host interactions. Specific gene alterations that did not alter the in host interaction phenotype are also presented. PHI-base is invaluable for comparative analyses and for the discovery of candidate targets in medically and agronomically important species for intervention. Version 4.12 (September 2021) contains 4387 references, and provides information on 8411 genes from 279 pathogens, tested on 228 hosts in 18, 190 interactions. This provides a 24% increase in gene content since Version 4.8 (September 2019). Bacterial and fungal pathogens represent the majority of the interaction data, with a 54:46 split of entries, whilst protists, protozoa, nematodes and insects represent 3.6% of entries. Host species consist of approximately 54% plants and 46% others of medical, veterinary and/or environmental importance. PHI-base data is disseminated to UniProtKB, FungiDB and Ensembl Genomes. PHI-base will migrate to a new gene-centric version (version 5.0) in early 2022. This major development is briefly described.


Assuntos
Bases de Dados Factuais , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Plantas/microbiologia , Plantas/parasitologia , Virulência
3.
Mol Biol Rep ; 48(6): 5013-5021, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34164751

RESUMO

Neospora caninum, Toxoplasma gondii and Hammondia spp. are coccidian parasites similar in morphology. Molecular techniques are necessary to detect parasite DNA isolated from stool samples in wild canids because they were reported as definitive hosts of N. caninum life cycle. The objective of this study was to develop a highly sensitive and accurate molecular method for the identification of coccidian Apicomplexa parasites in crab-eating fox (Cerdocyon thous) and pampas fox (Lycalopex gymnocercus). Tissue samples from road-killed animals (pampas fox = 46, crab-eating fox = 55) and feces (pampas fox = 84, crab-eating fox = 2) were collected, and species were diagnosed through molecular assay. PCR was used for the amplification of a fragment of the coccidian Apicomplexa nss-rRNA gene. Additionally, we developed a novel real-time PCR TaqMan™ probe approach to detect T. gondii- Hammondia spp. and N. caninum. This is the first report of N. caninum DNA in pampas fox feces (n = 1), thus it was also detected from pampas fox tissues (n = 1). Meanwhile, T. gondii was found in tissues of pampas (n = 1) and crab-eating (n = 1) foxes and H. triffittae in one crab-eating fox tissue. Despite the low percentage (2.5%) of positive samples, the molecular method developed in this study proved to be highly sensitive and accurate allowing to conduct an extensive monitoring analysis for these parasites in wildlife.


Assuntos
Apicomplexa/genética , Raposas/parasitologia , Infecções por Protozoários/diagnóstico , Animais , Animais Selvagens/genética , Apicomplexa/patogenicidade , Coccídios/genética , Coccídios/parasitologia , Fezes/microbiologia , Fezes/parasitologia , Comportamento Alimentar , Raposas/genética , Epidemiologia Molecular/métodos , Neospora/genética , Neospora/patogenicidade , Parasitos/genética , Reação em Cadeia da Polimerase/métodos , Infecções por Protozoários/genética , Uruguai
4.
Mol Biochem Parasitol ; 243: 111371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33872659

RESUMO

Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.


Assuntos
Amebozoários/fisiologia , Apicomplexa/fisiologia , Reprodução/fisiologia , Trypanosoma/fisiologia , Animais , Apicomplexa/patogenicidade , DNA de Cinetoplasto , Eucariotos/fisiologia , Feminino , Células Germinativas/fisiologia , Estágios do Ciclo de Vida , Masculino , Infecções por Protozoários/parasitologia , Infecções por Protozoários/transmissão
5.
Pesqui. vet. bras ; 41: e06717, 2021. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250488

RESUMO

The brown howler monkey (Alouatta guariba clamitans) is a primate species widely distributed in South America. Infections by protozoa are common in primates. However, studies on protozoa in primates in Brazil are scarce, so the goal of this study was to investigate DNA from the apicomplexan protozoa Neospora caninum, Sarcocystis spp. and Toxoplasma gondii in tissues of A. guariba clamitans. DNA extraction was performed on tissue samples from the heart, brain, liver, spleen, lung and intestine of six A. guariba clamitans from Santa Maria, Central Region of Rio Grande do Sul, Brazil. Conventional PCR was performed using 18S rRNA gene general primers for Apicomplexa and also specific primers to amplify Neosporaspp. and Toxoplasma gondii DNA. All animals were positive in the 18S PCR and the genetic sequencing confirmed the presence of Sarcocystis spp. DNA in the tissues of four animals belonging to at least two species (S. neurona and S. gigantea) and T. gondii DNA in the other two animals. One positive sample for T. gondii was genotypically characterized as atypical by the restriction fragment length polymorphism technique. N. caninum DNA was not detected in the tested samples. The presence of Apicomplexa protozoan DNA in the tissues of the six animals tested in this study highlights the importance of howler monkeys as maintainers of these pathogens in nature.(AU)


O bugio ruivo (Alouatta guariba clamitans) é uma espécie de primata amplamente distribuída na América do Sul. As infecções por protozoários são comuns em primatas. Entretanto, estudos sobre protozoários em primatas no Brasil são escassos, portanto o objetivo deste estudo foi pesquisar DNA dos protozoários Apicomplexa Neospora caninum, Sarcocystisspp. e Toxoplasma gondii em tecidos de A. guariba clamitans. A extração de DNA foi realizada em amostras de tecido do coração, cérebro, fígado, baço, pulmão e intestino de seis A. guariba clamitans oriundos de Santa Maria, Região Central do Rio Grande do Sul, Brasil. Foi realizada PCR convencional utilizando primers geral do gene 18S rRNA para Apicomplexa e também primers específicos para amplificação de DNA de Neospora spp.e Toxoplasma gondii. Todos os animais foram positivos no PCR geral para Apicomplexa e no sequenciamento genético confirmou-se a presença de DNA de Sarcocystis nos tecidos de quatro animais pertencentes a pelo menos duas espécies (S. neurona e S. gigantea), e DNA de T. gondii foi detectado nos outros dois animais. Uma amostra positiva para T. gondii foi caracterizada genotipicamente como atípico pela técnica de polimorfismo do comprimento do fragmento de restrição. Não foi detectado DNA de N. caninum nas amostras testadas. A presença de DNA de protozoários apicomplexa nos tecidos dos seis animais testados neste estudo destaca a importância dos bugios ruivos como mantenedores desses patógenos na natureza.(AU)


Assuntos
Animais , Toxoplasma/patogenicidade , Reação em Cadeia da Polimerase , Apicomplexa/patogenicidade , Alouatta/microbiologia , Técnicas de Genotipagem/veterinária , Animais Selvagens/microbiologia , Infecções por Protozoários/diagnóstico , DNA de Protozoário , Técnicas de Diagnóstico Molecular , Infecções
6.
Methods Mol Biol ; 2071: 1-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31758444

RESUMO

Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma "ticks" and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed-though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.


Assuntos
Toxoplasma/patogenicidade , Animais , Apicomplexa/patogenicidade , Interações Hospedeiro-Patógeno , Humanos
7.
Curr Opin Microbiol ; 52: 116-123, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31349210

RESUMO

Intracellular protozoans co-evolved with their mammalian host cells a range of strategies to cope with the composite and dynamic cell surface features they encounter during migration and infection. Therefore, these single-celled eukaryotic parasites represent a fascinating source of living probes for precisely capturing the dynamic coupling between the membrane and contractile cortex components of the cell surface. Such biomechanical changes drive a constant re-sculpting of the host cell surface, enabling rapid adjustments that contribute to cellular homeostasis. As emphasized in this review, through the design of specific molecular devices and stratagems to interfere with the biomechanics of the mammalian cell surface these parasitic microbes escape from dangerous or unfavourable microenvironments by breaching host cell membranes, directing the membrane repair machinery to wounded membrane areas, or minimizing membrane assault using discretion and speed when invading host cells for sustained residence.


Assuntos
Apicomplexa/patogenicidade , Membrana Celular/patologia , Citoplasma/parasitologia , Interações Hospedeiro-Parasita , Kinetoplastida/patogenicidade , Animais , Apicomplexa/genética , Membrana Celular/parasitologia , Humanos , Kinetoplastida/genética , Leishmania/genética , Leishmania/patogenicidade , Plasmodium/genética , Plasmodium/patogenicidade , Infecções por Protozoários , Toxoplasma/genética , Toxoplasma/patogenicidade , Trypanosoma/genética , Trypanosoma/patogenicidade
8.
Sci Rep ; 9(1): 10122, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300712

RESUMO

Hepatozoon spp. are Apicomplexan protozoa that parasitize a wide diversity of vertebrate hosts. In Brazil, few studies have reported the occurrence of Hepatozoon spp. in rodent species. Additionally, an evaluation of the population structure and distribution of Hepatozoon species over several Brazilian biomes has not yet been performed. The present work aimed to investigate the genetic diversity of Hepatozoon spp. in rodents from 31 genera sampled in five Brazilian biomes. Samples were submitted to PCR assays for Hepatozoon spp. targeting two regions of the 18S rRNA gene. Infection by Hepatozoon spp. was detected in 195 (42.2%) rodents comprising 24 genera. Phylogenetic analyses of 18S rRNA sequences grouped all sequences in the clade of Hepatozoon spp. previously detected in rodents and reptiles, apart from those detected in domestic/wild carnivores. These data raise two non-exclusive hypotheses: (i) rodents play an important role as intermediate or paratenic hosts for Hepatozoon infections in reptiles; and (ii) rodents do not seem to participate in the epidemiology of Hepatozoon infections of domestic/wild canids and felids in Brazil. TCS analyses performed with available 18S rRNA Hepatozoon sequences detected in rodents from Brazil showed the occurrence of six haplotypes, which were distributed in two large groups: one from rodents inhabiting the coastal region of Brazil and Mato Grosso state, and another from rodents from the central region of the country. A wide survey of the South American territory will help to elucidate the evolutionary history of Hepatozoon spp. parasitizing Rodentia in the American continent.


Assuntos
Apicomplexa/genética , Variação Genética , Roedores/parasitologia , Animais , Apicomplexa/patogenicidade , Brasil , Carnívoros/parasitologia , Haplótipos , Filogenia , Infecções Protozoárias em Animais/parasitologia , RNA Ribossômico 18S
10.
Neotrop Entomol ; 48(3): 368-372, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30488360

RESUMO

Social insects face strong selection from parasites because the conditions of group living often favor the transmission of infection among nestmates. However, there is little detailed information on the effects of parasite infection in the host species. Workers of Polybia species, neotropical swarm-founding wasps, are commonly infected by gregarines, protozoans that are exclusively parasitic on invertebrates. Previous studies showed that high rates of gregarine infection in workers of Polybia occidentalis (Olivier) have negative effects on their colony performance. However, the effect of seasonality on infection rates throughout the year or between wet and dry seasons has not been examined. Host-parasite interactions cannot be understood without consideration of the overall population dynamic. We compared rates of gregarine infection in workers of Polybia paulista (Ihering) between wet and dry seasons and among months. The 35% rate was by far the highest of the four wet seasons sampled, but the rates declined in the mid-wet season and were very low during the dry season. Strong seasonal differences in infection rates were also observed between the dry and wet seasons. Several potential factors affecting the seasonal differences are discussed.


Assuntos
Apicomplexa/isolamento & purificação , Estações do Ano , Vespas/parasitologia , Animais , Apicomplexa/patogenicidade , Brasil , Interações Hospedeiro-Parasita
11.
Exp Suppl ; 109: 351-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30535605

RESUMO

Diseases caused by protozoan parasites have a major impact on world health. These early branching eukaryotes cause significant morbidity and mortality in humans and livestock. During evolution, protozoan parasites have evolved toward complex life cycles in multiple host organisms with different nutritional resources. The conservation of functional metabolic pathways required for these successive environments is therefore a prerequisite for parasitic lifestyle. Nevertheless, parasitism drives genome evolution toward gene loss and metabolic dependencies (including strict auxotrophy), especially for obligatory intracellular parasites. In this chapter, we will compare and contrast how protozoan parasites have perfected this metabolic adaptation by focusing on specific auxotrophic pathways and scavenging strategies used by clinically relevant apicomplexan and trypanosomatid parasites to access host's nutritional resources. We will further see how these metabolic dependencies have in turn been exploited for therapeutic purposes against these human pathogens.


Assuntos
Apicomplexa/metabolismo , Infecções por Protozoários/metabolismo , Trypanosoma/metabolismo , Animais , Apicomplexa/patogenicidade , Humanos , Trypanosoma/patogenicidade
12.
Parasitol Res ; 117(12): 3909-3915, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284616

RESUMO

Studies on parasite-mediated selection often focus on single parasite taxa infecting single species of hosts. However, host populations experience infections by multiple parasite taxa simultaneously; coinfection is expected to influence how host- and/or parasite-related factors affect host exposure and susceptibility to various parasites, and the resulting patterns of infection. We sampled adult dragonflies from a population of Leucorrhinia intacta (Hagen) in eastern Ontario, Canada. Dragonflies were exposed to parasitism by both water mites (Arrenuridae) and gregarines (Eugregarinidae). We tested for covariation between these ecto- and endoparasites, while considering potential sex and age biases in host sampling and patterns of infection. Mite parasitism differed dramatically between host sexes: nearly all collected males were parasitized, whereas only half of females were infested. This was likely due to differences in age distributions between sexes in sampled dragonflies. Water mite and gregarine parasitism showed strong, negative covariation, and coinfection occurred far less often than expected by chance, although these patterns were restricted to samples of females which, unlike male samples, likely included many old and young dragonflies. We report the first observation of negative covariation between internal and external parasite taxa in an anisopteran host and suggest this relationship between water mites and gregarines may be more widespread among Odonata and perhaps other insects than previously surmised. We advance hypotheses based on host age-parasitism relationships as well as variable parasite-mediated selection to help explain the sex specificity of observed coinfection patterns in our samples.


Assuntos
Apicomplexa/patogenicidade , Interações Hospedeiro-Parasita/fisiologia , Ácaros/patogenicidade , Odonatos/parasitologia , Animais , Feminino , Masculino , Infestações por Ácaros , Ontário , Água
13.
Sci Rep ; 8(1): 7865, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777183

RESUMO

Apicomplexans comprise a group of unicellular, often highly pathogenic, obligate parasites exploiting either one or two hosts to complete a full reproductive cycle. For decades, various scallop populations have suffered cyclical mass mortality events, several of which shown to be caused by apicomplexan infections. We report the first dual mollusc life cycle for an apicomplexan: a species highly pathogenic in various pectinid bivalve species, but apathogenic when infecting the common whelk as Merocystis kathae. The sympatric distribution of the common whelk and scallops in the North Atlantic makes transmission extremely effective, occurring via the gastrointestinal tract, by scavenging and predation in whelks and unselective filter feeding in scallops. Infective sporozoites from whelks utilize scallops´ haemocytes to reach muscular tissue, where asexual reproduction occurs. Phylogenetically, this apicomplexan is robustly placed within the Aggregatidae and its inclusion in analyses supports a common ancestry with other basal invertebrate apicomplexans. Scallops seem able to regulate low-level infections of M. kathae as they exist in normal populations while epizootics occur during high levels of exposure from locally infected whelks. A targeted removal of whelks from valuable scallop grounds would be advantageous to minimize the occurrence of M. kathae epizootics and prevent damaging economic losses.


Assuntos
Apicomplexa/patogenicidade , Pectinidae/parasitologia , Caramujos/parasitologia , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/isolamento & purificação , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Rim/parasitologia , Rim/patologia , Estágios do Ciclo de Vida , Pectinidae/fisiologia , Filogenia , Caramujos/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-29531149

RESUMO

Migratory animals undergo seasonal and often spectacular movements and perform crucial ecosystem services. In response to anthropogenic changes, including food subsidies, some migratory animals are now migrating shorter distances or halting migration altogether and forming resident populations. Recent studies suggest that shifts in migratory behaviour can alter the risk of infection for wildlife. Although migration is commonly assumed to enhance pathogen spread, for many species, migration has the opposite effect of lowering infection risk, if animals escape from habitats where pathogen stages have accumulated or if strenuous journeys cull infected hosts. Here, we summarize responses of migratory species to supplemental feeding and review modelling and empirical work that provides support for mechanisms through which resource-induced changes in migration can alter pathogen transmission. In particular, we focus on the well-studied example of monarch butterflies and their protozoan parasites in North America. We also identify areas for future research, including combining new technologies for tracking animal movements with pathogen surveillance and exploring potential evolutionary responses of hosts and pathogens to changing movement patterns. Given that many migratory animals harbour pathogens of conservation concern and zoonotic potential, studies that document ongoing shifts in migratory behaviour and infection risk are vitally needed.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.


Assuntos
Ração Animal/provisão & distribuição , Migração Animal/fisiologia , Aves/imunologia , Borboletas/parasitologia , Quirópteros/imunologia , Cervos/imunologia , Animais , Animais Selvagens , Apicomplexa/patogenicidade , Aves/microbiologia , Aves/parasitologia , Borboletas/imunologia , Quirópteros/microbiologia , Cervos/microbiologia , Cervos/parasitologia , Ecossistema , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , América do Norte , Dinâmica Populacional , Estações do Ano , América do Sul
15.
PLoS Genet ; 13(9): e1007023, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957326

RESUMO

Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites.


Assuntos
Adaptação Fisiológica/genética , Apicomplexa/patogenicidade , Interações Hospedeiro-Parasita/genética , Mamíferos/parasitologia , Plasmodium falciparum/patogenicidade , Espectrina/genética , Animais , Artiodáctilos/parasitologia , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Primatas/parasitologia , Roedores/parasitologia , Alinhamento de Sequência , Espectrina/metabolismo
16.
Int J Parasitol ; 47(12): 701-710, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28893636

RESUMO

Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control.


Assuntos
Apicomplexa/fisiologia , Infecções Protozoárias em Animais/parasitologia , Animais , Apicomplexa/genética , Apicomplexa/crescimento & desenvolvimento , Apicomplexa/patogenicidade , Sistemas CRISPR-Cas , Reparo do DNA , Desoxirribonucleases/metabolismo , Edição de Genes , Técnicas de Inativação de Genes , Genoma de Protozoário , Estágios do Ciclo de Vida , Mutagênese Insercional , Infecções Protozoárias em Animais/economia , Infecções Protozoárias em Animais/prevenção & controle , Vacinas Protozoárias , Transfecção , Fatores de Virulência/fisiologia
17.
Crit Rev Biochem Mol Biol ; 52(3): 254-273, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276701

RESUMO

The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.


Assuntos
Apicomplexa , Regulação da Expressão Gênica/fisiologia , Genoma de Protozoário/fisiologia , Estágios do Ciclo de Vida/fisiologia , Proteômica , Proteínas de Protozoários , Animais , Apicomplexa/genética , Apicomplexa/metabolismo , Apicomplexa/patogenicidade , Humanos , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética
18.
FEBS Lett ; 590(15): 2469-81, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27403735

RESUMO

Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa.


Assuntos
Apicomplexa/genética , Exocitose/genética , Ácidos Fosfatídicos , Fosfatidilcolinas/metabolismo , Apicomplexa/metabolismo , Apicomplexa/patogenicidade , Diglicerídeos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/química , Lipídeos/genética , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 113(17): 4717-22, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071116

RESUMO

The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , Animais , Apicomplexa/parasitologia , Apicomplexa/patogenicidade , Células Cultivadas , Interações Hospedeiro-Patógeno/fisiologia , Malária , Camundongos , Plasmodium falciparum/patogenicidade , Transporte Proteico , Infecções por Protozoários/metabolismo
20.
PLoS One ; 10(12): e0144685, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684810

RESUMO

Due to the total and unexpected collapse of the Iceland scallop, Chlamys islandica, stocks around Iceland during the 2000s, a commercial fishing ban has been imposed on this valuable resource since 2003. Following the initial identification of an apicomplexan parasite in the scallops, a long-term surveillance program was established to evaluate the effect of the parasite on the population. The infections were highly prevalent in all shell sizes throughout the study. However, the parasite only impacts mature scallops where they cause severe macroscopic changes, characterized by an extensively diminished and abnormally coloured adductor muscle. A highly significant relationship was observed between infection intensity and gonad and adductor muscle indices. The first four years of the study, were characterized by high infection intensity and very poor condition of the adductor muscle and gonads, whilst during subsequent years, infections gradually decreased and the condition of the scallops improved. Histopathological changes were restricted to the presence of apicomplexan zoites which were widely distributed, causing varying degrees of pathology in all organs. In heavy infections, muscular and connective tissues were totally necrotized, destroying significant parts of numerous organs, especially the adductor muscle, digestive gland and gonads. The progression of the disease was in good synchrony with the mortality rates and the subsequent decline observed in the scallop stock and recruitment indices. Our findings strongly suggest that the apicomplexan parasite played a major role in the collapse of the Iceland scallop stock in Breidafjordur. In addition to causing mortality, the infections significantly impact gonad development which contributes further to the collapse of the stock in the form of lower larval recruitment. Furthermore, compelling evidence exists that this apicomplexan pathogen is causing serious disease outbreaks in other scallop populations. Similar abnormal adductor muscles and the parasite itself have been identified or observed in association with other mass mortality events in several different scallop species and commercial stocks in the northern hemisphere.


Assuntos
Apicomplexa/patogenicidade , Pectinidae/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Conservação dos Recursos Naturais/métodos , Gônadas/crescimento & desenvolvimento , Gônadas/parasitologia , Islândia/epidemiologia , Infecções Protozoárias em Animais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...